Experience-Independent Development of the Hamster Circadian Visual System
نویسندگان
چکیده
Experience-dependent functional plasticity is a hallmark of the primary visual system, but it is not known if analogous mechanisms govern development of the circadian visual system. Here we investigated molecular, anatomical, and behavioral consequences of complete monocular light deprivation during extended intervals of postnatal development in Syrian hamsters. Hamsters were raised in constant darkness and opaque contact lenses were applied shortly after eye opening and prior to the introduction of a light-dark cycle. In adulthood, previously-occluded eyes were challenged with visual stimuli. Whereas image-formation and motion-detection were markedly impaired by monocular occlusion, neither entrainment to a light-dark cycle, nor phase-resetting responses to shifts in the light-dark cycle were affected by prior monocular deprivation. Cholera toxin-b subunit fluorescent tract-tracing revealed that in monocularly-deprived hamsters the density of fibers projecting from the retina to the suprachiasmatic nucleus (SCN) was comparable regardless of whether such fibers originated from occluded or exposed eyes. In addition, long-term monocular deprivation did not attenuate light-induced c-Fos expression in the SCN. Thus, in contrast to the thalamocortical projections of the primary visual system, retinohypothalamic projections terminating in the SCN develop into normal adult patterns and mediate circadian responses to light largely independent of light experience during development. The data identify a categorical difference in the requirement for light input during postnatal development between circadian and non-circadian visual systems.
منابع مشابه
Light deprivation related changes of strategy selection in the radial maze
During the early postnatal age environmental signals underlie development of sensory systems. The visual system is considered as an appropriate system for evaluation of the role of sensory experience in postnatal development of sensory systems. In this study we evaluated the effect of visual deprivation on the usage of visuospatial cues in navigation of radial arm maze. Light (LR) and dark rear...
متن کاملDevelopmental Effects of Melatonin on Synaptic Plasticity of Hippocampal CA1 Neurons in Visual Deprived Rats
Background & Aims: Change in visual experience impairs circadian rhythms. In this study, The effects of visual deprivation during critical period of brain development and melatonin intake on synaptic plasticity of hippocampal CA1 neurons were evaluated. Methods: This experimental study was done on male rats kept in standard 12 hour light/dark condition (L...
متن کاملLight deprivation related changes of strategy selection in the radial maze
During the early postnatal age environmental signals underlie development of sensory systems. The visual system is considered as an appropriate system for evaluation of the role of sensory experience in postnatal development of sensory systems. In this study we evaluated the effect of visual deprivation on the usage of visuospatial cues in navigation of radial arm maze. Light (LR) and dark rear...
متن کاملThe hamster circadian rhythm system includes nuclei of the subcortical visual shell.
The clock regulating mammalian circadian rhythmicity resides in the suprachiasmatic nucleus. The intergeniculate leaflet, a major component of the subcortical visual system, has been shown to be essential for certain aspects of circadian rhythm regulation. We now report that midbrain visual nuclei afferent to the intergeniculate leaflet are also components of the hamster circadian rhythm system...
متن کاملLarval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development.
The visual system is one of the input pathways for light into the circadian clock of the Drosophila brain. In particular, extra-retinal visual structures have been proposed to play a role in both larval and adult circadian photoreception. We have analyzed the interactions between extra-retinal structures of the visual system and the clock neurons during brain development. We first show that the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011